LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

ADAMTS9-AS2 regulates PPP1R12B by adsorbing miR-196b-5p and affects cell cycle-related signaling pathways inhibiting the malignant process of esophageal cancer

ABSTRACT This study explored the mechanism that ADAMTS9-AS2/miR-196b-5p/PPP1R12B/cell cycle pathway axis in inhibiting the malignant progression of esophageal cancer (EC), providing a new idea for targeted molecular therapy of EC.… Click to show full abstract

ABSTRACT This study explored the mechanism that ADAMTS9-AS2/miR-196b-5p/PPP1R12B/cell cycle pathway axis in inhibiting the malignant progression of esophageal cancer (EC), providing a new idea for targeted molecular therapy of EC. The expression data of EC tissue were acquired from TCGA database. The target lncRNA, downstream miRNA and its target gene were determined by bioinformatics analysis. ADAMTS9-AS2, miR-196b-5p and PPP1R12B levels in EC tissue and cells were assayed through qRT-PCR. Western blot was applied to assess protein level of PPP1R12B in cells and tissues, as well as protein expression of CDK1, cyclin A2, cyclin B1 and Plk1 in EC cells. Cell proliferation was assayed via CCK-8 assay. Cell cycle distribution was analyzed by flow cytometry. Cell migratory and invasive abilities were measured through scratch healing and transwell assays. Pearson correlation analysis was utilized to analyze relationship among ADAMTS9-AS2, miR-196b-5p and PPP1R12B. RIP was introduced to assess binding among the three. Dual-luciferase assay was utilized to verify targeted binding sites. The tumor formation in nude mice assay was utilized to detect tumorigenesis of EC cells in vivo. ADAMTS9-AS2 was significantly lowly expressed while miR-196b-5p was increased in EC tissue and cells. ADAMTS9-AS2 bound to miR-196b-5p and constrained its expression. Overexpressed ADAMTS9-AS2 inhibited EC cell malignant progression via downregulating miR-196b-5p, while overexpressed miR-196b-5p reversed this inhibitory effect. ADAMTS9-AS2 modulated PPP1R12B level by competitively inhibiting miR-196b-5p. PPP1R12B played a modulatory role in EC by inhibiting cell cycle pathway. Overexpressed ADAMTS9-AS2 regulated the tumor-forming ability of EC cells in vivo through miR-196b-5p/PPP1R12B/cell cycle signaling pathway axis. ADAMTS9-AS2 downregulated PPP1R12B by adsorbing miR-196b-5p, so as to regulate the cell cycle signaling pathway to inhibit EC malignant progression.

Keywords: cell cycle; mir 196b; adamts9 as2

Journal Title: Cell Cycle
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.