LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nanometric positioning accuracy in the presence of presliding and sliding friction: Modelling, identification and compensation

Photo by diana_pole from unsplash

ABSTRACT Presliding and sliding frictional effects, limiting the performances of ultrahigh precision mechatronics devices, are studied in this work. The state-of-the-art related to frictional behavior in both motion regimes is,… Click to show full abstract

ABSTRACT Presliding and sliding frictional effects, limiting the performances of ultrahigh precision mechatronics devices, are studied in this work. The state-of-the-art related to frictional behavior in both motion regimes is, hence, considered, and the generalized Maxwell-slip (GMS) friction model is adopted to characterize frictional disturbances present in a micromanipulation device. All the parameters of the model are identified via experimental set-ups and included in the overall MATLAB/SIMULINK model. With the aim of compensating frictional effects, the modelled response of the system is thus compared to experimental results when using proportional-integral-derivative (PID) control, feed-forward model-based compensation and a self-tuning adaptive regulator. The adaptive regulator proves to be the most efficient and is, hence, used in the final repetitive point-to-point positioning tests allowing to achieve nanometric precision and accuracy.

Keywords: nanometric positioning; compensation; positioning accuracy; friction; presliding sliding

Journal Title: Mechanics Based Design of Structures and Machines
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.