LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bus travel time modelling using GPS probe and smart card data: A probabilistic approach considering link travel time and station dwell time

Photo from wikipedia

Abstract Path travel time estimation for buses is critical to public transit operation and passenger information system. State-of-the-art methods for estimating path travel time are usually focused on single vehicle… Click to show full abstract

Abstract Path travel time estimation for buses is critical to public transit operation and passenger information system. State-of-the-art methods for estimating path travel time are usually focused on single vehicle with a limited number of road segments, thereby neglecting the interaction among multiple buses, boarding behavior, and traffic flow. This study models path travel time for buses considering link travel time and station dwell time. First, we fit link travel time to shifted lognormal distributions as in previous studies. Then, we propose a probabilistic model to capture interactions among buses in the bus bay as a first-in-first-out queue, with every bus sharing the same set of behaviors: queuing to enter the bus bay, loading/unloading passengers, and merging into traffic flow on the main road. Finally, path travel time distribution is estimated by statistically summarizing link travel time distributions and station dwell time distributions. The path travel time of a bus line in Hangzhou is analyzed to validate the effectiveness of the proposed model. Results show that the model-based estimated path travel time distribution resembles the observed distribution well. Based on the calculation of path travel time, link travel time reliability is identified as the main factor affecting path travel time reliability.

Keywords: path travel; link travel; station dwell; time; travel time

Journal Title: Journal of Intelligent Transportation Systems
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.