Abstract This paper explores a hybrid wavelet, bootstrap and neural network (WBNN) modeling approach for daily (1, 3 and 5 day) urban water demand forecasting in situations with limited data… Click to show full abstract
Abstract This paper explores a hybrid wavelet, bootstrap and neural network (WBNN) modeling approach for daily (1, 3 and 5 day) urban water demand forecasting in situations with limited data availability. This method was tested using 3 years of daily water demand and meteorological data for the city of Calgary, Alberta, Canada. The performance of the WBNN method was compared to that of three other methods: traditional neural networks (NN), wavelet NNs (WNN), and bootstrap-based NN (BNN) models. While the hybrid WBNN and WNN models equally provided 1-day lead-time forecasts of greater accuracy than those obtained with other methods, for longer lead-time (3- or 5-day) forecasts the WBNN model alone outperformed the other models. The confidence bands generated using the WBNN model displayed the uncertainty associated with the forecasts.
               
Click one of the above tabs to view related content.