ABSTRACT A multi-objective optimization methodology is proposed herein for accurate identification of leakage in water distribution networks (WDNs) using pressure and flow sensors. We first model leakage at potential nodes… Click to show full abstract
ABSTRACT A multi-objective optimization methodology is proposed herein for accurate identification of leakage in water distribution networks (WDNs) using pressure and flow sensors. We first model leakage at potential nodes using the EPANET software, and then divide WDN into near-homogenous zones using k-means clustering algorithm based on geographic distribution of nodes. Finally, flow and pressure sensors locations are optimized using the NSGA-II algorithm to identify the leakage zone accurately. Novelty of the proposed approach lies in sequential optimization of flow and pressure sensors placement, which helps improve the accuracy of leakage zone identification in WDNs. The objective functions of this study are: 1) maximizing accuracy of identified leakage zone and 2) minimizing number of sensors (and hence operational costs). Simulation results of the Mesopolis WDN corroborate the efficiency and effectiveness of the proposed approach.
               
Click one of the above tabs to view related content.