LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Comparison of transcriptome profiles of nucleated red blood cells in cord blood between preterm and full-term neonates

Photo from wikipedia

ABSTRACT Background The reactivation of fetal γ-globin expression is an effective strategy for ameliorating the clinical symptoms of β-hemoglobinopathies. However, the mechanism of globin switching, especially the roles of long… Click to show full abstract

ABSTRACT Background The reactivation of fetal γ-globin expression is an effective strategy for ameliorating the clinical symptoms of β-hemoglobinopathies. However, the mechanism of globin switching, especially the roles of long non-coding RNAs (lncRNAs) in this process, remains elusive. Methods We compared the in vivo transcriptome profiles of nucleated red blood cells (NRBCs) isolated from the umbilical cord blood of preterm and full-term newborns. We collected 75 umbilical cord blood samples and performed qPCR of the candidate genes. Results In this study, we identified 7,166 differentially expressed protein-coding genes, 3,243 differentially expressed lncRNAs, and 79 differentially expressed microRNAs. Our data show that the Fanconi anemia pathway and the H19/let-7/LIN28B axis may be involved in γ- to β-globin gene switching. Moreover, we constructed the hub gene network of the differentially expressed transcription factors. Based on qPCR, we found that BCL11A was differentially expressed based on biological sex. We also confirmed that H19 is differentially expressed and established the H19-related network to reveal the potential regulatory mechanisms. Conclusion We present the profiles of the in vivo transcriptome differences of NRBCs between preterm and full-term neonates for the first time, and provide novel research targets for β-hemoglobinopathies.

Keywords: differentially expressed; cord blood; preterm full; blood; full term

Journal Title: Hematology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.