Abstract Present paper proposes a fuzzy neural network (FNN)-based modelling for the identification of structural parameters of uncertain multi-storey shear buildings. Here, the method is developed to identify uncertain structural… Click to show full abstract
Abstract Present paper proposes a fuzzy neural network (FNN)-based modelling for the identification of structural parameters of uncertain multi-storey shear buildings. Here, the method is developed to identify uncertain structural mass, stiffness and damping matrices from the dynamic responses of the structure without any optimization processes that are generally used to solve inverse vibration problems. Uncertainty has been taken in term of fuzzy numbers. The governing equations of motion are first solved by the classical method to get responses of the consecutive stories. Further the governing equations of motion are modified based on relative responses of consecutive stories in such a way that the new set of equations can be implemented in a cluster of FNNs. As such the model starts solving the nth floor by FNN modelling to estimate the structural parameters. Subsequently, series of FNN models are used to estimate the parameters for (n − 1)th storey to the first storey. One may note that single layer FNNs have been used for training for each cluster of the FNN such that the converged weights give the uncertain structural parameters. The initial weights in the FNN architecture are taken as the design parameters in uncertain (fuzzy) form. In order to validate the present model, various example problems of different multi-storey shear structures have been considered. Related results are incorporated in term of tables and graphs. Comparisons between theoretical and identified results are carried out and are found to be in good agreement.
               
Click one of the above tabs to view related content.