Abstract In this paper, we present a novel class of iterative reconstruction methods for severely angular undersampled or/and limited-view tomographic problems with fan-beam scanning geometry. The proposed algorithms are based… Click to show full abstract
Abstract In this paper, we present a novel class of iterative reconstruction methods for severely angular undersampled or/and limited-view tomographic problems with fan-beam scanning geometry. The proposed algorithms are based on a new analytical transform which generalizes Fourier-slice theorem to divergent-beam scanning geometries. Using a non-rigid coordinate transform, divergent rays can be reorganized into parallel ones. Therefore, one can employ a simpler parallel-beam projection model instead of more complicated divergent-beam geometries. Various existing iterative reconstruction techniques for divergent-beam geometries can be easily adapted to the proposed framework. The significant advantage of this formulation is the possibility of exploiting efficient Fourier-based recovery methods without rebinning of the projections. In case of highly sparse measurements (few-view data), rebinning methods are not suitable due to error-prone angular interpolation involved. In this work, three new methods based on the novel analytical framework for fan-beam geometry are presented: the Gerchberg-Papoulis algorithm, the Neumann decomposition method and its total variation regularized version. Presented numerical experiments demonstrate that the methods can be competitive in reconstructing from few-view noisy tomographic measurements.
               
Click one of the above tabs to view related content.