Abstract Ground vibration is one of the environmental concerns caused by mine blasts. The signature-hole technique, essentially the convolution of a single-hole signature with an impulse train function representing the… Click to show full abstract
Abstract Ground vibration is one of the environmental concerns caused by mine blasts. The signature-hole technique, essentially the convolution of a single-hole signature with an impulse train function representing the timing of the blast, is one method used to predict and control ground vibrations. This method requires measuring a signature waveform from a singular blasting hole, which may be a limitation. Deconvolution of vibration signals, the inverse problem of signature-hole method, is still a frontier issue to solve that limitation in mining engineering. Wiener filtering deconvolution is used to compress the impulse train into a time-lagged spike, so that a normalized single-hole signature can be extracted from the full blast vibration waveform. The proposed methodology gives good results for a case study of mining blast using electronic detonators. Successful deconvolution will eliminate the need for measuring signatures by using all the seismograph information collected routinely in mine operations.
               
Click one of the above tabs to view related content.