ABSTRACT Introduction Lymphangioleiomyomatosis (LAM) is a rare lung disease that is characterized by smooth muscle-like cell growth in the lungs. The current available oral treatment rapamycin slows down the disease… Click to show full abstract
ABSTRACT Introduction Lymphangioleiomyomatosis (LAM) is a rare lung disease that is characterized by smooth muscle-like cell growth in the lungs. The current available oral treatment rapamycin slows down the disease progression but does not result in a cure. Rapamycin is also limited by its low bioavailability and dose-related adverse side effects. New treatments are, therefore, underway to investigate alternative targets and combination therapies for LAM. In recent years, much focus has been on the development of therapies based on inhaled nanotechnology using carriers to deliver drugs, as it is shown to improve drug solubility, local targeted treatment, and bioavailability. Areas covered This review, therefore, focuses on future prospective treatments for LAM using nanoparticles and lipid-based nanocarriers, including liposomes, solid lipid nanoparticles, micelles, and polymeric nanoparticles. It also investigates how nanoparticles’ physicochemical factors such as size and charge can affect the treatment of both pulmonary and extrapulmonary LAM. Expert opinion Advanced clinical research is still needed to demonstrate the full potential and drive future commercialization of LAM treatments delivered via inhaled lipid nanobased formulations. If successful, the resultant effects will be seen in the improvement in the life expectancy and life quality of LAM patients.
               
Click one of the above tabs to view related content.