INTRODUCTION Microneedle fabrication was conceptualised in the 1970s as devices for painless transdermal drug delivery. The last two decades have seen considerable research and financial investment in this area with… Click to show full abstract
INTRODUCTION Microneedle fabrication was conceptualised in the 1970s as devices for painless transdermal drug delivery. The last two decades have seen considerable research and financial investment in this area with SARS-CoV-2 and other vaccines catalysing their application to in vivo intradermal vaccine delivery. Microneedle arrays have been fabricated in different shapes, geometries, formats, and out of different materials. AREAS COVERED The recent pandemic has offered microneedle platforms the opportunity to be employed as a vehicle for SARS-CoV-2 vaccine administration. The various modes of vaccination delivery and the potential of microneedle arrays-based vaccines will be presented, with a specific focus placed on recent SARS-CoV-2 research. The advantages of microneedle-based vaccine administration, in addition to the major hurdles to their en masse implementation, will be examined. EXPERT OPINION Considering the widely acknowledged disadvantages of current vaccine delivery, such as anxiety, pain, and the requirement for professional administration, a large shift in this research sphere is imminent. The SARS-CoV-2 pandemic has catalysed the development of alternate vaccination platforms, working to avoid the requirement for mass vaccination centres. As microneedle vaccine patches are transitioning through clinical study phases, research will be required to ready this technology for a more mass production environment.
               
Click one of the above tabs to view related content.