LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Biochemical and molecular mechanisms associated with Zn deficiency tolerance and signaling in rice (Oryza sativa L.)

Photo by slaiden from unsplash

ABSTRACT In this study, zinc (Zn) deficiency caused a significant reduction in growth parameters and tissue Zn concentrations in BRRI 33 (sensitive) but not in Pokkali (tolerant). The increase of… Click to show full abstract

ABSTRACT In this study, zinc (Zn) deficiency caused a significant reduction in growth parameters and tissue Zn concentrations in BRRI 33 (sensitive) but not in Pokkali (tolerant). The increase of proton extrusion in both genotypes under high pH suggests that it gets triggered as a common consequence of reducing pH and solubilization of Zn. Real-time PCR showed pronounced upregulation of OsZIP4, OsDMAS1, OsNAS2 and OsPCS1 in Zn-deficient roots of Pokkali, and to a lesser extent in BRRI 33 only for OsZIP4 and OsPCS1. This suggests that OsDMAS1, OsNAS2 and OsPCS1 functions as secondary consequences leading to higher chelation and uptake of Zn under Zn deficiency in Pokkali. Further, a major increase in CAT, POD, SOD, GR and key metabolites suggests that high antioxidant defense plays a critical role in Zn deficiency tolerance in Pokkali. Further, Pokkali self-grafts and plants having Pokkali rootstock combined with BRRI 33 scion showed no significant decline in plant height, root dry matter and Zn concentration along with upregulation of Zn transporters (OsZIP4 and OsIRT1) under Zn deficiency, suggesting that signal driving mechanisms for Zn deficiency tolerance mechanisms are generated in the root and Zn-inefficient BRRI 33 is not capable of producing signals or sensing them.

Keywords: deficiency tolerance; pokkali; biochemical molecular; molecular mechanisms; deficiency

Journal Title: Journal of Plant Interactions
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.