LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Insights into 28-homobrassinolide (HBR)-mediated redox homeostasis, AsA–GSH cycle, and methylglyoxal detoxification in soybean under drought-induced oxidative stress

Photo by noaa from unsplash

ABSTRACT Brassinosteroids (BRs) are well recognized for their defensive role in plants under abiotic stress conditions, but 28-homobrassinolide (HBR)-induced tolerance to drought stress has not been reported in soybean (Glycine… Click to show full abstract

ABSTRACT Brassinosteroids (BRs) are well recognized for their defensive role in plants under abiotic stress conditions, but 28-homobrassinolide (HBR)-induced tolerance to drought stress has not been reported in soybean (Glycine max L.). The present study investigated the effect of HBR on soybean seedlings under drought stress. Drought stress suppressed growth and photosynthetic systems while increased the proline, glycine betaine (GB), anthocyanin, total phenolic (TP), and total flavonoid (TF) levels in soybean seedlings. HBR restricted reactive oxygen species (ROS) accumulation and decreased the hydrogen peroxide (H2O2) and malondialdehyde (MDA) content by triggering the antioxidant systems. HBR acts as a shield in soybean, protecting the plant against the harmful effects of methylglyoxal (MG) effects by upregulating the enzymes glyoxalase I, (Gly I;15%) and glyoxalase II (Gly II;29.1%) compared to the levels in drought stressed seedlings. Overall, HBR improved drought tolerance in soybean seedlings by modulating osmolytes, the AsA–GSH cycle, and enzyme activities. GRAPHICAL ABSTRACT

Keywords: soybean; drought; homobrassinolide hbr; stress; gsh cycle; asa gsh

Journal Title: Journal of Plant Interactions
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.