LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The potential for machine learning algorithms to improve and reduce the cost of 3-dimensional printing for surgical planning

Photo from wikipedia

ABSTRACT Introduction: 3D-printed anatomical models play an important role in medical and research settings. The recent successes of 3D anatomical models in healthcare have led many institutions to adopt the… Click to show full abstract

ABSTRACT Introduction: 3D-printed anatomical models play an important role in medical and research settings. The recent successes of 3D anatomical models in healthcare have led many institutions to adopt the technology. However, there remain several issues that must be addressed before it can become more wide-spread. Of importance are the problems of cost and time of manufacturing. Machine learning (ML) could be utilized to solve these issues by streamlining the 3D modeling process through rapid medical image segmentation and improved patient selection and image acquisition. The current challenges, potential solutions, and future directions for ML and 3D anatomical modeling in healthcare are discussed. Areas covered: This review covers research articles in the field of machine learning as related to 3D anatomical modeling. Topics discussed include automated image segmentation, cost reduction, and related time constraints. Expert commentary: ML-based segmentation of medical images could potentially improve the process of 3D anatomical modeling. However, until more research is done to validate these technologies in clinical practice, their impact on patient outcomes will remain unknown. We have the necessary computational tools to tackle the problems discussed. The difficulty now lies in our ability to collect sufficient data.

Keywords: machine; machine learning; potential machine; learning algorithms; anatomical modeling; cost

Journal Title: Expert Review of Medical Devices
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.