LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Distinct toxic interactions of TiO2 nanoparticles with four coexisting organochlorine contaminants on algae

Photo by lexscope from unsplash

Abstract Engineered nanoparticles are increasingly discharged into the environment. After discharge, these nanoparticles can interact with co-existing organic contaminants, resulting in a phenomena referred to as ‘joint toxicity’. This study… Click to show full abstract

Abstract Engineered nanoparticles are increasingly discharged into the environment. After discharge, these nanoparticles can interact with co-existing organic contaminants, resulting in a phenomena referred to as ‘joint toxicity’. This study evaluated joint toxicities of TiO2 nanoparticles (TiO2NPs) with four different (atrazine, hexachlorobenzene, pentachlorobenzene, and 3,3′,4,4′-tetrachlorobiphenyl) organochlorine contaminants (OCs) toward algae (Chlorella pyrenoidosa). The potential mechanisms underlying the joint toxicity were discussed, including TiO2NPs–OC interactions, effects of TiO2NPs and OCs on biophysicochemical properties of algae and effects of TiO2NPs and OCs on each other’s bioaccumulation in algae. The results indicate that coexposure led to a synergistic effect on the joint toxicity for TiO2NPs–atrazine, antagonistic effect for TiO2NPs–hexachlorobenzene and TiO2NPs–3,3',4,4'-tetrachlorobiphenyl, and an additive effect for TiO2NPs–pentachlorobenzene. There was nearly no adsorption of OCs by TiO2NPs, and the physicochemical properties of TiO2NPs were largely unaltered by the presence of OCs. However, both OCs and NPs affected the biophysicochemical properties of algal cells and thereby influenced the cell surface binding and/or internalization. TiO2NPs significantly increased the bioaccumulation of each OC. However, with the exception of atrazine, the bioaccumulation of TiO2NPs decreased when used with each OC. The distinct joint toxicity outcomes were a result of the balance between the increased toxicities of OCs (increased bioaccumulations) and the altered toxicity of TiO2NPs (bioaccumulation can either increase or decrease). These results can significantly improve our understanding of the potential environmental risks associated with NPs.

Keywords: joint toxicity; toxicity; tio2nps; organochlorine contaminants; tio2 nanoparticles

Journal Title: Nanotoxicology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.