LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Copper nanoparticles induce early fibrotic changes in the liver via TGF-β/Smad signaling and cause immunosuppressive effects in rats

Photo by martz90 from unsplash

Abstract Copper nanoparticles (Cu NPs) have various uses, including as additives in polymers/plastics, lubricants for metallic coating, and biomedical applications. We investigated the role of transforming growth factor (TGF)-β1 signaling… Click to show full abstract

Abstract Copper nanoparticles (Cu NPs) have various uses, including as additives in polymers/plastics, lubricants for metallic coating, and biomedical applications. We investigated the role of transforming growth factor (TGF)-β1 signaling in hepatic damage caused by Cu NPs and explored the effects of a 28-day repeated oral administration to Cu NPs on the immune response. The exposure to Cu NPs caused a dose-dependent increase in Cu levels in the liver and spleen. Cu NPs caused hepatic damage and markedly increased oxidative stress in liver tissues. Cu NPs induced activation of TGF-β1/Smad signaling by induction of vascular endothelial growth factor and matrix metalloproteinase-9. Exposure to Cu NPs also induced activation of Smad-independent pathways, phosphorylation of mitogen-activated protein kinases (MAPKs) and Akt/FoxO3. Consistent with the activation of TGF-β1/Smad-dependent and -independent pathways, Cu NPs markedly increased the deposition and induction of extracellular matrix components, α-smooth muscle actin, and collagens in liver tissues. In addition, repeated exposure to Cu NPs suppressed the proliferation of mitogenically stimulated T- or B-lymphocytes and decreased CD3+ (particularly, CD3+CD4+CD8−) and CD45+ population, followed by decreased levels of immunoglobulins and Th1/Th2 type cytokines. Collectively, Cu NPs caused hepatic damage and induced pro-fibrotic changes, which were closely related to the activation of oxidative stress-mediated TGF-β1/Smad-dependent and -independent pathways (MAPKs and Akt/FoxO3). We confirmed the immunosuppressive effect of Cu NPs via the inhibition of mitogen-stimulated spleen-derived lymphocyte proliferation and suppression of B- or T-lymphocyte-mediated immune responses.

Keywords: fibrotic changes; tgf smad; smad signaling; tgf; copper nanoparticles

Journal Title: Nanotoxicology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.