Abstract The molecular response of animals to nanoplastic particles is still largely unclear. In this study, we employed a modified prolonged exposure system to investigate the molecular response of Caenorhabditis… Click to show full abstract
Abstract The molecular response of animals to nanoplastic particles is still largely unclear. In this study, we employed a modified prolonged exposure system to investigate the molecular response of Caenorhabditis elegans to nanopolystyrene particles. Exposure to nanopolystyrene particles (1 μg/L) significantly decreased expressions of daf-2 encoding an insulin receptor, age-1 encoding a PI3K, and akt-1 encoding an Akt/PKB, and increased expression of daf-16 encoding a FOXO transcriptional factor in insulin signaling pathway. Among these genes, mutation of daf-2, age-1, or akt-1 induced a resistance to toxicity of nanopolystyrene particles, whereas mutation of daf-16 induced a susceptibility to the toxicity of nanopolystyrene particles. RNAi knockdown of daf-16 could further suppress the resistance of daf-2, age-1, or akt-1 mutant to the toxicity of nanopolystyrene particles. The insulin signaling pathway acted in intestinal cells to regulate the toxicity of nanopolystyrene particles. Moreover, sod-3 encoding a manganese superoxide dismutase, mtl-1 encoding a metallothionein, and gpd-2 encoding a glyceraldehyde-3-phosphate dehydrogenase were identified as downstream targeted genes for daf-16 in the regulation of toxicity of nanopolystyrene particles. Therefore, a signaling cascade of DAF-2-AGE-1-AKT-1-DAF-16-SOD-3/MTL-1/GPD-2 was identified in response to nanopolystyrene particles in nematodes. Additionally, this signaling cascade in the insulin signaling pathway may mediate a protective response for nematodes against the adverse effects from nanopolystyrene particles.
               
Click one of the above tabs to view related content.