LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ultra-high temperature ceramic composite

ABSTRACT The work carried out under the XMat research programme (Materials Systems for Extreme Environments, EPSRC Programme Grant number EP/K008749/1-2) in the field of ultra-high temperature ceramic matrix composites has… Click to show full abstract

ABSTRACT The work carried out under the XMat research programme (Materials Systems for Extreme Environments, EPSRC Programme Grant number EP/K008749/1-2) in the field of ultra-high temperature ceramic matrix composites has been focused on the design, development and manufacture of complex shapes and large panels for use under extreme conditions. The composites are made from 2.5D woven carbon fibre preforms impregnated with HfB2 powders and with a pyrolytic carbon, PyC, matrix created using chemical vapour infiltration, CVI. More recently, the knowledge acquired during the development of these Cf-HfB2-C composites has been focused on shortening the densification time by moving from conventional CVI to Radio Frequency-heated CVI; the work has also switched to Cf-ZrB2-C composites. In addition, the use of 3D carbon fibre preforms has begun to be explored to improve the mechanical properties and also the replacement of PyC matrix with ZrB2 to reducing the oxidation of the composites at ultra-high temperature.

Keywords: temperature ceramic; matrix; high temperature; ultra high; ceramic composite

Journal Title: Advances in Applied Ceramics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.