LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Repeated-sprint training in heat and hypoxia: effect of exercise-to-rest ratio.

Photo from wikipedia

AbstractThe aim of this study was to investigate acute performance and physiological responses to the manipulation of exercise-to-rest ratio (E:R) during repeated-sprint hypoxic training (RSH) in hot conditions. Twelve male… Click to show full abstract

AbstractThe aim of this study was to investigate acute performance and physiological responses to the manipulation of exercise-to-rest ratio (E:R) during repeated-sprint hypoxic training (RSH) in hot conditions. Twelve male team-sport players completed two experimental sessions at a simulated altitude of ∼3000 m (FIO2 0.144), air temperature of 40°C and relative humidity of 50%. Exercise involved either 3×5×10-s (E:R1:2) or 3×10×5-s (E:R1:4) maximal cycling sprints interspersed with active recoveries at 120W (20-s between sprints, 2.5 and 5-min between sets for E:R1:2 and E:R1:4 respectively). Sessions were matched for overall sprint and total session duration (47.5-min). Peak and mean power output, and total work were greater in E:R1:4 than E:R1:2 (p < 0.05). Peak core temperature was significantly higher in E:R1:4 than E:R1:2 (38.44 ± 0.33 vs. 38.20 ± 0.35°C, p = 0.028). Muscle deoxygenation magnitude during sprints was greater in E:R1:2 (28.2 ± 1.6 vs. 22.4 ± 4.6%, p < 0.001), while muscle reoxygenation did not differ between conditions (p > 0.05).These results indicate E:R1:4 increased mechanical power output and core temperature compared to E:R1:2. Both protocols had different effects on measures of muscle oxygenation, with E:R1:2 generating greater muscle oxygen extraction and E:R1:4 producing more muscle oxygenation flux, which are both important signals for peripheral adaptation. We conclude that the E:R manipulation during RSH in the heat might be used to target different physiological and performance outcomes, with these findings forming a strong base for future mechanistic investigation.

Keywords: rest ratio; repeated sprint; exercise; exercise rest

Journal Title: European journal of sport science
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.