LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The accuracy of ten common resting metabolic rate prediction equations in men and women collegiate athletes.

Photo by mehdizadeh from unsplash

Predictive resting metabolic rate (RMR) equations are widely used to determine total daily energy expenditure (TDEE). However, it remains unclear whether these predictive RMR equations accurately predict TDEE in the… Click to show full abstract

Predictive resting metabolic rate (RMR) equations are widely used to determine total daily energy expenditure (TDEE). However, it remains unclear whether these predictive RMR equations accurately predict TDEE in the athletic populations. The purpose of this study was to examine the accuracy of 10 commonly used RMR prediction equations (Cunningham, De Lorenzo, Freire, Harris-Benedict, Mifflin St. Jeor, Nelson, Owen, Tinsley, Watson, Schofield) in collegiate men and women athletes. One-hundred eighty-seven National Collegiate Athletic Association Division III men (n=97) and women (n=90) athletes were recruited to participate in one day of metabolic testing. RMR was measured using indirect calorimetry and body composition was analyzed using air displacement plethysmography. A repeated measures ANOVA with Bonferroni post hoc analyses was selected to determine mean differences between measured and predicted RMR. Linear regression analysis was used to assess the accuracy of each RMR prediction method (p<0.05). All prediction equations significantly underestimated RMR (p<0.001), although there was no difference between the De Lorenzo and Watson equations and measured RMR (p=1.00) for women, only. In men, the Tinsley and Freire equations were the most agreeable formulas with the lowest root-mean-square prediction error value of 404 and 412 kcals, respectively. In women, the De Lorenzo and Watson equations were the most agreeable equations with the lowest root-mean-squared error value of 171 and 211 kcals, respectively. The results demonstrate that such RMR equations may underestimate actual energy requirements of athletes and thus, practitioners should interpret such values with caution.

Keywords: resting metabolic; men women; rmr; metabolic rate; prediction; prediction equations

Journal Title: European journal of sport science
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.