LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Stochastic control of single-species population dynamics model subject to jump ambiguity

Photo from wikipedia

A logistic type stochastic control model for cost-effective single-species population management subject to an ambiguous jump intensity is presented based on the modern multiplier-robust formulation. The Hamilton-Jacobi-Bellman-Isaacs (HJBI) equation for… Click to show full abstract

A logistic type stochastic control model for cost-effective single-species population management subject to an ambiguous jump intensity is presented based on the modern multiplier-robust formulation. The Hamilton-Jacobi-Bellman-Isaacs (HJBI) equation for finding the optimal control is then derived. Mathematical analysis of the HJBI equation from the viewpoint of viscosity solutions is carried out with an emphasis on the non-linear and non-local term, which is a key term arising due to the jump ambiguity. We show that this term can be efficiently handled in the framework of viscosity solutions by utilizing its monotonicity property. A numerical scheme to discretize the HJBI equation is presented as well. Our model is finally applied to management of algae population in river environment. Optimal management policies ranging from the short-term to long-term viewpoints are numerically investigated.

Keywords: jump; term; control; stochastic control; species population; single species

Journal Title: Journal of Biological Dynamics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.