LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mathematical analysis of the transmission dynamics of COVID-19 infection in the presence of intervention strategies

Photo from wikipedia

ABSTRACT The novel Coronavirus (COVID-19) infection has become a global public health issue, and it has been a cause for morbidity and mortality of more people throughout the world. In… Click to show full abstract

ABSTRACT The novel Coronavirus (COVID-19) infection has become a global public health issue, and it has been a cause for morbidity and mortality of more people throughout the world. In this paper, we investigated the impacts of vaccination, other protection measures, home quarantine with treatment, and hospital quarantine with treatment strategies simultaneously using a deterministic mathematical modelling approach. No one has considered these intervention strategies simultaneously in his/her modelling approach. We examined all the qualitative properties of the model such as the positivity and boundedness of the model solutions, the disease-free and endemic equilibrium points, the effective reproduction number using next-generation matrix method, local stabilities of equilibrium points using the Routh–Hurwitz method. Using the Centre Manifold criteria, we have shown the existence of backward bifurcation whenever the COVID-19 effective reproduction number is less than unity. Moreover, we have analysed both sensitivity and numerical simulation using parameter values taken from published literature. The numerical results show that the transmission rate is the most sensitive parameter we have to control. Also vaccination, other protection measures, home quarantine with treatment, and hospital quarantine with treatment have great effects to minimize the COVID-19 transmission in the community.

Keywords: covid infection; quarantine treatment; intervention strategies

Journal Title: Journal of Biological Dynamics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.