We constructed a Susceptible-Addicted-Reformed model and explored the dynamics of nonlinear relapse in the Reformed population. The transition from susceptible considered at-risk is modeled using a strictly decreasing general function,… Click to show full abstract
We constructed a Susceptible-Addicted-Reformed model and explored the dynamics of nonlinear relapse in the Reformed population. The transition from susceptible considered at-risk is modeled using a strictly decreasing general function, mimicking an influential factor that reduces the flow into the addicted class. The basic reproductive number is computed, which determines the local asymptotically stability of the addicted-free equilibrium. Conditions for a forward-backward bifurcation were established using the basic reproductive number and other threshold quantities. A stochastic version of the model is presented, and some numerical examples are shown. Results showed that the influence of the temporarily reformed individuals is highly sensitive to the initial addicted population.
               
Click one of the above tabs to view related content.