ABSTRACT Copper nanoparticles (CuNPs) were synthesized by reducing a copper sulfate solution using the aqueous extract of Ferula macrocolea flowers. The optimum conditions were 0.01 M CuSo4.5H2O volume ratio 1.5, pH… Click to show full abstract
ABSTRACT Copper nanoparticles (CuNPs) were synthesized by reducing a copper sulfate solution using the aqueous extract of Ferula macrocolea flowers. The optimum conditions were 0.01 M CuSo4.5H2O volume ratio 1.5, pH 12, temperature 80°C and incubation time 2 h. The ultraviolet–visible absorption spectra confirmed the formation of CuNPs with a characteristic peak at 576 nm. The X-ray diffraction and scanning electron microscope analysis of synthesized CuNPs revealed spherical-shaped nanoparticles with an average size of 22.3 nm ranged between 11 and 33 nm. Energy-dispersive X-ray and X-ray fluorescence spectra showed the peak in the copper region. The fourier transform infrared spectroscopy showed the capping of the CuNPs by compounds contained in F. macrocolea flowers extract. The synthesized CuNPs demonstrated activity against Staphylococcus aureus, followed by Bacillus cereus, Escherichia coli and Klebsiella pneumonia. Cytotoxicity assay indicated no decrease in viability of normal human lymphocytes up to a concentration of 25 µg/mL CuNPs. GRAPHICAL ABSTRACT
               
Click one of the above tabs to view related content.