LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Personalized travel route recommendation using collaborative filtering based on GPS trajectories

Photo by wistomsin from unsplash

ABSTRACT Travelling is a critical component of daily life. With new technology, personalized travel route recommendations are possible and have become a new research area. A personalized travel route recommendation… Click to show full abstract

ABSTRACT Travelling is a critical component of daily life. With new technology, personalized travel route recommendations are possible and have become a new research area. A personalized travel route recommendation refers to plan an optimal travel route between two geographical locations, based on the road networks and users’ travel preferences. In this paper, we define users’ travel behaviours from their historical Global Positioning System (GPS) trajectories and propose two personalized travel route recommendation methods – collaborative travel route recommendation (CTRR) and an extended version of CTRR (CTRR+). Both methods consider users’ personal travel preferences based on their historical GPS trajectories. In this paper, we first estimate users’ travel behaviour frequencies by using collaborative filtering technique. A route with the maximum probability of a user’s travel behaviour is then generated based on the naïve Bayes model. The CTRR+ method improves the performances of CTRR by taking into account cold start users and integrating distance with the user travel behaviour probability. This paper also conducts some case studies based on a real GPS trajectory data set from Beijing, China. The experimental results show that the proposed CTRR and CTRR+ methods achieve better results for travel route recommendations compared with the shortest distance path method.

Keywords: travel route; ctrr; route recommendation; personalized travel; route

Journal Title: International Journal of Digital Earth
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.