LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Personalized tourist route recommendation model with a trajectory understanding via neural networks

Photo from wikipedia

ABSTRACT Travel recommendations form a major part of tourism service. Traditional collaborative filtering and Markov model are not appropriate for expressing the trajectory features, for travel preferences of tourists are… Click to show full abstract

ABSTRACT Travel recommendations form a major part of tourism service. Traditional collaborative filtering and Markov model are not appropriate for expressing the trajectory features, for travel preferences of tourists are dynamic and affected by previous behaviors. Inspired by the success of deep learning in sequence learning, a personalized recurrent neural network (P-RecN) is proposed for tourist route recommendation. It is data-driven and adaptively learns the unknown mapping of historical trajectory input to recommended route output. Specifically, a trajectory encoding module is designed to mine the semantic information of trajectory data, and LSTM neural networks are used to capture the sequence travel patterns of tourists. In particular, a temporal attention mechanism is integrated to emphasize the main behavioral intention of tourists. We retrieve a geotagged photo dataset in Shanghai, and evaluate our model in terms of accuracy and ranking ability. Experimental results illustrated that P-RecN outperforms other baseline approaches and can effectively understand the travel patterns of tourists.

Keywords: neural networks; route recommendation; tourist route; model; trajectory

Journal Title: International Journal of Digital Earth
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.