LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Numerical Modeling of an Air-Based Density Separator

Photo by mattpalmer from unsplash

ABSTRACT The modern air-based density separator achieves density-based separation for particle sizes greater than 6 mm. Parametric studies, conducted with a modified laboratory-scale unit, operating at an optimal feed rate… Click to show full abstract

ABSTRACT The modern air-based density separator achieves density-based separation for particle sizes greater than 6 mm. Parametric studies, conducted with a modified laboratory-scale unit, operating at an optimal feed rate of 200 kg/hr to upgrade low-rank coal, have demonstrated the applicability to clean finer size fractions up to 1 mm. However, there is a lack of fundamental understanding of the separation process that can be provided utilizing numerical modeling techniques. The separation process was numerically modeled using K-Epsilon and RSM turbulence formulations and validated using experimental dataset. The results prove that the effect of fine coal vortices forming around the riffles act as a transport mechanism for higher density particle movement across the table deck resulting in 43% displacement of the high-density particles to the product side. The velocity and vector plots show high local variances of air speeds and pressure near the feed end and an increase in feed rate results in a drop in the deshaling capability of the table.

Keywords: air based; density; air; based density; numerical modeling; density separator

Journal Title: International Journal of Coal Preparation and Utilization
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.