ABSTRACT Methods for enriching organic macerals in coal are of great importance, but, due to the yield constraint, physical-beneficiation methods are less effective. Chemical beneficiation using alkali followed by acid… Click to show full abstract
ABSTRACT Methods for enriching organic macerals in coal are of great importance, but, due to the yield constraint, physical-beneficiation methods are less effective. Chemical beneficiation using alkali followed by acid has been studied at the pilot stage with a batch of 500 kg of feed coal for three different coal fractions of the physical-beneficiation process using dense media cyclone and froth flotation. The mechanism of silica and alumina reactions during the alkali-leaching process has been derived and found that 150°C is the critical point for precipitation of the unwanted sodalite compound. The composition of sodalite is calculated based on the experimental results. Due to the formation of sodalite, the acid-leaching step is critical for the removal of sodalite and, hence, regeneration of acid is of great importance. A process has been developed for acid regeneration in which the first major impurity, silica, is removed by a polycondensation process and the second major impurity, alumina, is removed by a reaction with sulfuric acid. Optimum operating conditions for the regeneration process have been identified where more than 99% of the silica and 80% of the alumina can be removed from the spent acid. Almost 60% of the spent acid can be regenerated for further use and is recycled.
               
Click one of the above tabs to view related content.