Abstract It has been hypothesized that circulating concentrations of estradiol during the preovulatory period, can impact subsequent progesterone concentrations. Ovulation was synchronized in nonlactating beef cows (n = 53). Cows that exhibited… Click to show full abstract
Abstract It has been hypothesized that circulating concentrations of estradiol during the preovulatory period, can impact subsequent progesterone concentrations. Ovulation was synchronized in nonlactating beef cows (n = 53). Cows that exhibited estrus before gonadotrophin-releasing hormone (GnRH)-induced ovulation (d 0) had greater (p<.01) peak concentrations of estradiol compared with cows that did not express estrus (11.5 ± 0.8 vs. 6.2 ± 0.6 pg/mL), respectively, but there was no difference in ovulatory follicle size (p= .80) or interval from GnRH2 to ovulation (p=.23). Circulating concentrations of progesterone during luteal formation (d 3–7; p=.70 and p=.77) or mid-luteal phase (d 8–14; p=.39 and p=.12) were not affected by elevated periovulatory estradiol or an interaction with day. To investigate the direct influence of estradiol on luteal function, ovulation (d 0) was synchronized in nonlactating beef cows and cows were allocated to three groups (control, n = 5; vehicle injection, n = 4; or an estradiol antagonist (Fulvestrant; ICI 182,780), n = 4. Intrafollicular injection of vehicle (100 µL) or an estradiol antagonist (25 μg Fulvestrant in 100 µL) into the largest follicle occurred on d –2. Concentrations of estradiol increased (p<.0001) from d –2 to 0 but did not differ among groups (p>.50). Furthermore, plasma concentrations of progesterone on d 0 through 20 were not affected by treatment (p=.86). These results indicate that elevated preovulatory estradiol before ovulation was not required to prepare granulosa cells for luteinization or subsequent luteal progesterone secretion but did tend to impact luteal lifespan.
               
Click one of the above tabs to view related content.