ABSTRACT In the biopharmaceutical environment, controlling the Critical Quality Attributes (CQA) of a product is essential to prevent changes that affect its safety or efficacy. Physico-chemical techniques and bioassays are… Click to show full abstract
ABSTRACT In the biopharmaceutical environment, controlling the Critical Quality Attributes (CQA) of a product is essential to prevent changes that affect its safety or efficacy. Physico-chemical techniques and bioassays are used to screen and monitor these CQAs. The higher order structure (HOS) is a CQA that is typically studied using techniques that are not commonly considered amenable to quality control laboratories. Here, we propose a peptide mapping-based method, named native peptide mapping, which could be considered as straightforward for HOS analysis and applicable for IgG4 and IgG1 antibodies. The method was demonstrated to be fit-for-purpose as a stability-indicating assay by showing differences at the peptide level between stressed and unstressed material. The unfolding pathway induced by a heat stress was also studied via native peptide mapping assay. Furthermore, we demonstrated the structure–activity relationship between HOS and biological activity by analyzing different types of stressed samples with a cell-based assay and the native peptide mapping. The correlation between both sets of results was highlighted by monitoring peptides located in the complementary-determining regions and the relative potency of the biotherapeutic product. This relationship represents a useful approach to interrogate the criticality of HOS as a CQA of a drug.
               
Click one of the above tabs to view related content.