ABSTRACT According to geodetic research works, surface deformation in the form of uplift or subsidence in volcanic areas is either a sign of magma moving towards the opening of the… Click to show full abstract
ABSTRACT According to geodetic research works, surface deformation in the form of uplift or subsidence in volcanic areas is either a sign of magma moving towards the opening of the volcano (inflation) or removal of the magma source (deflation). Using the new method of fundamental solutions (MFS) in this study, a deformation field for the surface of the volcano is calculated considering the effect of topography. MFS is a numerical technique for solving boundary value problems with known partial differential equations. This technique has not been used in volcanic deformation studies so far. Because of the simplicity and efficiency of the technique, it is also an effective tool for solving a wide range of problems in other fields of science and technology. To test the method, the displacement calculated using the MFS was compared with that of the interferometric synthetic aperture radar observations from the previous study in Cerro Blanco volcano. The volcano was in the deflation mode during this period at the rate of 1.2 cm/yr. The comparison showed a root-mean-square error (RMSE) in the order of 2 mm which represents a satisfactory agreement with the results of the observations, less than the RMSE of the analytical models considered.
               
Click one of the above tabs to view related content.