Abstract A landslide susceptibility map, which describes the quantitative relationship between known landslides and control factors, is essential to link the theoretical prediction with practical disaster reduction measures. In this… Click to show full abstract
Abstract A landslide susceptibility map, which describes the quantitative relationship between known landslides and control factors, is essential to link the theoretical prediction with practical disaster reduction measures. In this work, the artificial neural network (ANN) model, a promising tool for mapping landslide susceptibility, was adopted to evaluate the coseismic landslide susceptibility affected by the 2013 Minxian, Gansu, China, Mw5.9 earthquake. The evaluation was based on the landslide inventory of this event containing 6479 landslides, and the terrain, geological and seismic factors from database available. During the analyses, two ANN models were applied: considering the entire factors aforementioned (CS model) and excluding seismic factors above (ES model). The success and predictive rates of ANN models and the cumulative percentage curves of susceptibility maps obtained from the models all indicate that the CS model has a relatively better performance than the ES model. However, the comparison of overlapping susceptibility areas suggests that 52.8% of the very high susceptibility areas derived from the CS model coincide with the ES model; and for the very low susceptibility areas, this proportion is 73.55%. Thus, it can be concluded that the assessment based on existing earthquake-induced landslides and the ES model could provide better background information for seismic landslide susceptibility mapping and disaster prevention.
               
Click one of the above tabs to view related content.