LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Infection with enteric pathogens Salmonella typhimurium and Citrobacter rodentium modulate TGF-beta/Smad signaling pathways in the intestine

Photo from wikipedia

ABSTRACT Salmonella and Citrobacter are gram negative, members of Enterobacteriaceae family that are important causative agents of diarrhea and intestinal inflammation. TGF-β1 is a pleiotropic multifunctional cytokine that has been… Click to show full abstract

ABSTRACT Salmonella and Citrobacter are gram negative, members of Enterobacteriaceae family that are important causative agents of diarrhea and intestinal inflammation. TGF-β1 is a pleiotropic multifunctional cytokine that has been implicated in modulating the severity of microbial infections. How these pathogens alter the TGF-β1 signaling pathways in the intestine is largely unknown. Streptomycin-pretreated C57BL/6J mouse model colonized with S. typhimurium for 8 hours (acute) and 4 days (chronic) infection and FVB/N mice infected with C. rodentium for 6 days were utilized. Results demonstrated an increase in TGF-β1 receptor I expression (p<0.05) in S. typhimurium infected mouse ileum at both acute and chronic post-infection vs control. This was associated with activation of Smad pathways as evidenced by increased phosphorylated (p)-Smad2 and p-Smad3 levels in the nucleus. The inhibitory Smad7 mRNA levels showed a significant up regulation during acute phase of Salmonella infection but no change at 4d post-infection. In contrast to Salmonella, infection with Citrobacter caused drastic downregulation of TGF receptor I and II concomitant with a decrease in levels of Smad 2, 3, 4 and 7 expression in the mouse colon. We speculate that increased TGF-β1 signaling in response to Salmonella may be a host compensatory response to promote mucosal healing; while C. rodentium decreases TGF-β1 signaling pathways to promote inflammation and contribute to disease pathogenesis. These findings increase our understanding of how enteric pathogens subvert specific aspects of the host-cellular pathways to cause disease.

Keywords: signaling pathways; citrobacter; infection; pathways intestine; tgf; typhimurium

Journal Title: Gut Microbes
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.