LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The reciprocal interaction between fluoride release of glass ionomers and acid production of Streptococcus mutans biofilm

Photo from wikipedia

ABSTRACT Objectives The aim of this study was to demonstrate the mode of action of glass ionomers (G-Is) against cariogenic biofilms in the slow fluoride release phase by analyzing the… Click to show full abstract

ABSTRACT Objectives The aim of this study was to demonstrate the mode of action of glass ionomers (G-Is) against cariogenic biofilms in the slow fluoride release phase by analyzing the reciprocal interaction between fluoride release from G-Is and acid production of Streptococcus mutans biofilm. Methods G-Is discs in the slow fluoride release phase were prepared and 51 h-old S. mutans biofilms were formed on these discs. The interrelationship between the acid production of the biofilm and the fluoride release of the G-Is discs was investigated by analyzing both factors simultaneously during the biofilm formation period. The composition of the 51 h-old biofilms was then examined using microbiological, biochemical, and confocal laser scanning microscopic methods. Results Acid production by the cariogenic biofilm, particularly at < pH 5, promotes G-Is fluoride release. Conversely, G-Is fluoride release inhibits the acid production of the cariogenic biofilm. This reciprocal interaction results in the reduction of virulence such as extracellular polysaccharides formation and cariogenic biofilm bio-mass, which may reduce the potential of secondary caries development around G-Is. Conclusions These results suggest that G-Is may play a role in preventing the development of secondary caries during the slow fluoride release phase.

Keywords: reciprocal interaction; acid production; release; fluoride release

Journal Title: Journal of Oral Microbiology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.