LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modeling the drivers of interannual variability in cyanobacterial bloom severity using self-organizing maps and high-frequency data

Photo from wikipedia

Abstract It is well established that cyanobacteria populations in shallow lakes exhibit dramatic fluctuations on both interannual and intraannual timescales; however, despite extensive research, disentangling the drivers of interannual variability… Click to show full abstract

Abstract It is well established that cyanobacteria populations in shallow lakes exhibit dramatic fluctuations on both interannual and intraannual timescales; however, despite extensive research, disentangling the drivers of interannual variability in bloom severity has proved challenging. Critical thresholds of abiotic drivers such as wind, irradiance, air temperature, and tributary inputs may control the development and collapse of blooms, but these thresholds are difficult to identify in large and complex datasets. In this study, we compared high-frequency estimates of oxygen metabolism in a shallow bay of Lake Champlain to concurrent measurements of physical and chemical parameters over 3 years with very different bloom dynamics. We clustered the data using supervised and unsupervised self-organizing maps to identify the environmental drivers associated with key stages of bloom development. We then used threshold analysis to identify subtle yet important thresholds of thermal stratification that drive transitions between bloom growth and decline. We found that extended periods with near-surface temperature differentials above 0.20 °C were associated with the initial development of bloom conditions, and subsequent frequency and timing of wind mixing events had a strong influence on interannual variability in bloom severity. The methods developed here can be widely applied to other high frequency lake monitoring datasets to identify critical thresholds controlling bloom development.

Keywords: high frequency; frequency; bloom; bloom severity; interannual variability

Journal Title: Inland Waters
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.