ABSTRACT Accumulation of mutations in epitopes of cytolytic-T-lymphocytes immune response (CTL) in HIV-reservoir seems to be one of the reasons for shock-and-kill strategy failure. Ten non-controller patients on successful cART… Click to show full abstract
ABSTRACT Accumulation of mutations in epitopes of cytolytic-T-lymphocytes immune response (CTL) in HIV-reservoir seems to be one of the reasons for shock-and-kill strategy failure. Ten non-controller patients on successful cART (TX) and seven elite controllers (EC) were included. HIV-Gag gene from purified resting memory CD4+ T-cells was sequenced by Next-Generation-Sequencing. HLA class-I alleles were typed to predict optimal HIV-Gag CTL epitopes. For each subject, the frequency of mutated epitopes in the HIV-Gag gene, the proportion of them considered as CTL-escape variants as well as their effect on antigen recognition by HLA were assessed. The proportion (%) of mutated HIV-Gag CTL epitopes in the reservoir was high and similar in EC and TX (86%[50–100] and 57%[48–82] respectively, p=0.315). Many of them were predicted to negatively impact antigen recognition. Moreover, the proportion of mutated epitopes considered to be CTL-escape variants was also similar in TX and EC (77%[49–92] vs. 50%[33–75] respectively, p=0.117). Thus, the most relevant finding of our study was the high and similar proportions of HIV-Gag CTL-escape mutations in the reservoir of both HIV-noncontroller patients with cART (TX) and patients with spontaneous HIV-control (EC). Our findings suggest that escape mutations of CTL-response may be another obstacle to eliminate the HIV reservoir and constitute a proof of concept that challenges HIV cure strategies focused on the reactivation of reservoirs. Due to the small sample size that could impact the robustness of the study, further studies with larger cohorts of elite controller patients are needed to confirm these results.
               
Click one of the above tabs to view related content.