LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Change detection based on Faster R-CNN for high-resolution remote sensing images

Photo from wikipedia

ABSTRACT Change detection is of great significance in remote sensing. The advent of high-resolution remote sensing images has greatly increased our ability to monitor land use and land cover changes… Click to show full abstract

ABSTRACT Change detection is of great significance in remote sensing. The advent of high-resolution remote sensing images has greatly increased our ability to monitor land use and land cover changes from space. At the same time, high-resolution remote sensing images present a new challenge over other satellite systems, in which time-consuming and tiresome manual procedures must be needed to identify the land use and land cover changes. In recent years, deep learning (DL) has been widely used in the fields of natural image target detection, speech recognition, face recognition, etc., and has achieved great success. Some scholars have applied DL to remote sensing image classification and change detection, but seldomly to high-resolution remote sensing images change detection. In this letter, faster region-based convolutional neural networks (Faster R-CNN) is applied to the detection of high-resolution remote sensing image change. Compared with several traditional and other DL-based change detection methods, our proposed methods based on Faster R-CNN achieve higher overall accuracy and Kappa coefficient in our experiments. In particular, our methods can reduce a large number of false changes.

Keywords: high resolution; detection; resolution remote; remote sensing; change detection

Journal Title: Remote Sensing Letters
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.