LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Species specific physiological responses of Pinus densiflora and Larix kaempferi seedlings to open-field experimental warming and precipitation manipulation

Photo by bastroloog from unsplash

Abstract Physiological responses of 1-year-old Pinus densiflora and Larix kaempferi seedlings were measured under open-field warming and precipitation manipulation. Air temperature of warming plots was 3 °C higher, while precipitation manipulation… Click to show full abstract

Abstract Physiological responses of 1-year-old Pinus densiflora and Larix kaempferi seedlings were measured under open-field warming and precipitation manipulation. Air temperature of warming plots was 3 °C higher, while precipitation manipulation plots received ±40% of the precipitation than control plots. Seedlings were planted in May, and temperature and precipitation were manipulated from June 2017. Total chlorophyll content (Chlt), net photosynthetic rate (Pn), transpiration rate (E), and stomatal conductance (gs) were measured between July and September 2017. For P. densiflora and L. kaempferi, Chlt increased by 11.75% and 11.64%, and Pn decreased by 9.14% and 2.17% under warming, respectively. E and gs were lower under warming in P. densiflora, but higher in L. kaempferi. The lower Pn in P. densiflora resulted from stomatal closure, while that of L. kaempferi resulted from reduced vitality. Lower precipitation increased Chlt and Pn by 11.64% and 2.66% for P. densiflora, and by 6.40% and 4.32% for L. kaempferi, respectively. Conversely, higher precipitation decreased Pn of P. densiflora by 5.72%, and decreased Chlt and Pn of L. kaempferi by 8.24% and 4.55%, respectively. These results can be attributed to concentrated precipitation. In this study, two species responded differently even when they were exposed to the same environmental conditions, and this was due to the species-specific mechanisms to water stress derived from the high temperature.

Keywords: precipitation manipulation; densiflora; precipitation; physiological responses; kaempferi

Journal Title: Forest Science and Technology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.