Abstract This study aimed to develop a forest carbon (C) and nitrogen (N) model, known as the Forest Biomass and Dead organic matter Carbon And Nitrogen (FBDCAN), which can be… Click to show full abstract
Abstract This study aimed to develop a forest carbon (C) and nitrogen (N) model, known as the Forest Biomass and Dead organic matter Carbon And Nitrogen (FBDCAN), which can be useful under limited input data availability. An N module was designated with three N pools (biomass, dead organic matter, and soil inorganic N) and ten N cycle processes (N deposition, biological N fixation, N mineralization, immobilization, root N uptake, retranslocation, nitrification, N leaching, denitrification, and turnover), and then integrated into an existing forest C model. A pilot application was carried out for a Pinus densiflora forest in Gwangneung Experimental Forests (PGEF), to verify the performance and reliability of the model. The simulated net N mineralization in 2010 (69.91 kg N ha−1 yr−1) was within the observed range in PGEF. Furthermore, the simulated N stock (3.91 Mg N ha−1) based on the FBDCAN model was consistent with the observed N stock (4.13 Mg N ha−1) in PGEF (r2 = 0.96 to 0.99). The newly developed forest C and N model could be used for the estimation of N cycle processes, N stock, and C stock, even in regions where the input data availability is low.
               
Click one of the above tabs to view related content.