LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The angiotensin-converting enzyme inhibitor, captopril, suppressed Hepatic Stellate Cell activation via NF-kappaB or wnt3α/β-catenin pathway.

Activation of hepatic stellate cells (HSC) is associated with hepatic fibrogenesis, which is one of complications of diabetes mellitus. Captopril possesses potent anti-inflammation, oxidative stress and fibrosis effects. However, the… Click to show full abstract

Activation of hepatic stellate cells (HSC) is associated with hepatic fibrogenesis, which is one of complications of diabetes mellitus. Captopril possesses potent anti-inflammation, oxidative stress and fibrosis effects. However, the specific molecular mechanism of captopril in high glucose (HG)-induced hepatic stellate cells has not been elucidated. Following the treatment of HG or captopril treatment for rat hepatic stellate cells (HSC-T6), cell activities were detected by Cell Counting Kit-8 (CCK8) assay. reactive oxygen species (ROS) levels were determined by ROS staining. The expression of inflammation-related proteins (Interleukin (IL)-1β, IL-6 and IL-8) and fibrosis-related proteins (fibronectin (FN), collagen I, collagen III, collagen IV, matrix metallopeptidase (MMP)-2 and MMP-9) were determined by Western blot. Captopril significantly decreased HSC-T6 cell viability induced by HG in dose-dependent manner, as well as decreased levels of malondialdehyde (MDA), ROS, pro-inflammatory markers and fibrosis-related proteins while upregulated superoxide dismutase (SOD) activities. We further found that captopril decreased the ratio of p-IκBα/IκBα and the ratio of p-p65/p65. Intriguing, phorbol myristate acetate (PMA) or LiCl was able to significantly reverse the captopril-induced alteration of oxidative stress-, inflammation- and fibrosis- markers levels. In conclusion, in HG-stimulated HSC-T6 cells, captopril displayed a potent ability to inhibit oxidative stress, inflammation and hepatic fibrogenesis via NF-kappaB or wnt3α/β-catenin. These results demonstrated the mechanism of captopril as well as the role of the NF-kappaB or wnt3α/β-catenin on HSC-T6 activation induced by HG.

Keywords: wnt3 catenin; kappab wnt3; captopril; cell; hepatic stellate

Journal Title: Bioengineered
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.