LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nintedanib ameliorates oxidized low-density lipoprotein -induced inflammation and cellular senescence in vascular endothelial cells

Photo by nci from unsplash

ABSTRACT Atherosclerosis (AS) is a life-threatening cardiovascular disease and it has been reported that endothelial dysfunction is the initial inducer of AS. Recent reports suggest that inflammation and oxidative stress-induced… Click to show full abstract

ABSTRACT Atherosclerosis (AS) is a life-threatening cardiovascular disease and it has been reported that endothelial dysfunction is the initial inducer of AS. Recent reports suggest that inflammation and oxidative stress-induced cell senescence are main inducers of endothelial dysfunction. Nintedanib is an effective inhibitor of multityrosine kinase receptors developed for the treatment of fibrosis, which was recently reported to exert inhibitory effects against inflammation and oxidative stress. The present study plans to study the effect and mechanism of Nintedanib on endothelial dysfunction. We found that in oxidized low-density lipoprotein (ox-LDL)-treated human umbilical vein endothelial cells (HUVECs), the increased production of total cholesterol (TC), free cholesterol (FC), and pro-inflammatory cytokines were observed, reversed by 10 μM and 25 μM Nintedanib. The elevated reactive oxygen species (ROS) and malondialdehyde (MDA) levels, as well as the declined activity of glutathione peroxidase (GSH-Px) in ox-LDL-treated HUVECs, were significantly abolished by 10 μM and 25 μM Nintedanib. Increased proportion of senescence-associated β-galactosidase (SA-β-gal) positive staining cells, activated p53/p21 pathway, and promoted cell fraction in the G0/G1 phase were observed in ox-LDL-treated HUVECs, all of which were dramatically reversed by 10 μM and 25 μM Nintedanib. Lastly, the increased expression level of Arginase-II (Arg-II) in HUVECs by ox-LDL was repressed by Nintedanib. The protective effects of Nintedanib on ox-LDL- induced cellular senescence were pronouncedly blocked by the overexpression of Arg-II. Collectively, our data suggest that Nintedanib mitigates ox-LDL-induced inflammation and cellular senescence in vascular endothelial cells by downregulating Arg‐II. Graphical abstract

Keywords: inflammation; endothelial cells; senescence; low density; cellular senescence; oxidized low

Journal Title: Bioengineered
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.