LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Methyltransferase-like 3 induces the development of cervical cancer by enhancing insulin-like growth factor 2 mRNA-binding proteins 3-mediated apoptotic chromatin condensation inducer 1 mRNA stability

Photo from wikipedia

ABSTRACT N6-methyladenosine (m6A) plays a critical role in the tumorigenesis of cervical cancer (CC). Here, we aimed to investigate the potential role of methyltransferase-like 3 (METTL3) in CC. Gene expression… Click to show full abstract

ABSTRACT N6-methyladenosine (m6A) plays a critical role in the tumorigenesis of cervical cancer (CC). Here, we aimed to investigate the potential role of methyltransferase-like 3 (METTL3) in CC. Gene expression was determined via real-time quantitative polymerase chain reaction. Cellular functions were detected using colony formation, 5-ethynyl-2′-deoxyuridine (EdU), and Transwell assays. The interactions among METTL3, insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3), and apoptotic chromatin condensation inducer 1 (ACIN1) were confirmed using the MeRIP and RIP assays. An in vivo assay was performed to verify the role of METTL3 in CC development. METTL3 is overexpressed in CC, and therefore, its knockdown inhibits the proliferation and migration of CC cells. Silencing METTL3 inhibits tumor growth in vivo. Moreover, a positive association was observed between METTL3 and ACIN1. METTL3 interacts with IGF2BP3 to promote the mRNA stability of ACIN1, the overexpression of which induces the aggressiveness of CC cells. METTL3 promotes ACIN1 mRNA stability to accelerate CC progression, implying that METTL3 is a promising biomarker in CC. Graphical abstract

Keywords: cervical cancer; mrna stability; growth; methyltransferase like; mettl3

Journal Title: Bioengineered
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.