LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

MicroRNA-155-5p modulates the progression of acute respiratory distress syndrome by targeting interleukin receptors

Photo from wikipedia

ABSTRACT Acute respiratory distress syndrome (ARDS) is a multifactorial inflammatory lung failure with a high incidence and a high cost burden. However, the underlying pathogenesis of ARDS is still unclear.… Click to show full abstract

ABSTRACT Acute respiratory distress syndrome (ARDS) is a multifactorial inflammatory lung failure with a high incidence and a high cost burden. However, the underlying pathogenesis of ARDS is still unclear. Recently, microRNA has been shown to have critical function in regulating the pathogenesis of ARDS development and inflammation. To identify the important microRNA in the serum from patients with ARDS that may be potential biomarkers for the disease and explore the underlying disease mechanism. We found significant upregulation of miR-155-5p expression in serum samples from patients with ARDS compared with the control group (p < 0.01). The levels of interleukin receptors and inflammatory cytokines were significantly increased in blood samples from patients with ARDS (p < 0.05). In the cell model, miR-155-5p had a binding site in the 3’-UTR of the three interleukin receptors. In LPS-simulated BEAS-2B cells, transfection of miR-155-5p mimic inhibited the expression levels of these interleukin receptors, and was found to directly target the inflammatory response of leukocyte nodulin receptor through NF-kB signaling. In conclusion, miR-155-5p can alleviate LPS-simulated injury that induces the expression of IL17RB, IL18R1, and IL22RA2 by affecting the NF-kB pathway; however, it cannot change the occurrence of inflammatory storms. Collectively, this suggests that the progression of ARDS is the result of effects of the multiple regulatory pathways, providing novel evidence for the therapy of ARDS. Graphical abstract

Keywords: mir 155; interleukin receptors; acute respiratory; respiratory distress; distress syndrome

Journal Title: Bioengineered
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.