LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Long intergenic non-protein-coding RNA 467 promotes tumor progression and angiogenesis via the microRNA-128-3p/vascular endothelial growth factor C axis in colorectal cancer

Photo by jeremybishop from unsplash

Abstract Long non-coding RNAs (lncRNAs) are important regulators and biomarkers of tumorigenesis and tumor metastasis. Long intergenic non-protein-coding RNA 467 (LINC00467) is associated with various cancers. However, the role and… Click to show full abstract

Abstract Long non-coding RNAs (lncRNAs) are important regulators and biomarkers of tumorigenesis and tumor metastasis. Long intergenic non-protein-coding RNA 467 (LINC00467) is associated with various cancers. However, the role and mechanism of LINC00467 in colorectal cancer (CRC) promotion are poorly understood. This study aimed to present new details of LINC00467 in the progression of CRC. Reverse transcription–polymerase chain reaction demonstrated that the expression level of LINC00467 in CRC tissues and cell lines was significantly upregulated, which was closely related to the clinical features of CRC. Cell and animal studies showed that the downregulation of LINC00467 expression in CRC cells significantly inhibited cell proliferation, metastasis, and angiogenesis. Moreover, the overexpression of LINC00467 accelerated CRC promotion. Bioinformatics analysis and luciferase reporter assay confirmed that LINC00467 binds to miR-128-3p. Rescue experiments manifested that decreased miR-128-3p level reversed CRC cell inhibition by silencing LINC00467. Furthermore, vascular endothelial growth factor C (VEGFC) was identified as a target of miR-128-3p that could reverse the inhibition of cell growth that is mediated by miR-128-3p. Altogether, our results showed that LINC00467 contributes to CRC progression and angiogenesis via the miR-128-3p/VEGFC axis. Our findings expand the understanding of the mechanisms underlying CRC and suggest potential targets for clinical strategies against CRC. Graphical abstract

Keywords: growth; progression; linc00467; crc; angiogenesis; mir 128

Journal Title: Bioengineered
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.