Abstract This paper is devoted to solve the steady monoenergetic Fokker-Planck equation in the 1D slab when the incoming fluxes and the source term are allowed to depend on the… Click to show full abstract
Abstract This paper is devoted to solve the steady monoenergetic Fokker-Planck equation in the 1D slab when the incoming fluxes and the source term are allowed to depend on the azimuth θ. The problem is split into a collection of θ-independent problems for the Fourier coefficients of the full solution. The main difficulty is that, except for the zeroth Fourier coefficient, each of these problems contains an artificial absorption coefficient which is singular at the poles. Two numerical schemes capable of dealing with the singularities are proposed: one that is considered as the main scheme, and a second ‘security’ scheme which is used to verify that the results obtained by means of the first one are reliable. Numerical experiments showing second order of convergence are conducted and discussed.
               
Click one of the above tabs to view related content.