LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

NP-ODE: Neural process aided ordinary differential equations for uncertainty quantification of finite element analysis

Photo from wikipedia

Abstract Finite Element Analysis (FEA) has been widely used to generate simulations of complex nonlinear systems. Despite its strength and accuracy, FEA usually has two limitations: (i) running high-fidelity FEA… Click to show full abstract

Abstract Finite Element Analysis (FEA) has been widely used to generate simulations of complex nonlinear systems. Despite its strength and accuracy, FEA usually has two limitations: (i) running high-fidelity FEA often requires high computational cost and consumes a large amount of time; (ii) FEA is a deterministic method that is insufficient for uncertainty quantification when modeling complex systems with various types of uncertainties. In this article, a physics-informed data-driven surrogate model, named Neural Process Aided Ordinary Differential Equation (NP-ODE), is proposed to model the FEA simulations and capture both input and output uncertainties. To validate the advantages of the proposed NP-ODE, we conduct experiments on both the simulation data generated from a given ordinary differential equation and the data collected from a real FEA platform for tribocorrosion. The results show that the proposed NP-ODE outperforms benchmark methods. The NP-ODE method realizes the smallest predictive error as well as generating the most reasonable confidence intervals with the best coverage on testing data points. Appendices, code, and data are available in the supplementary files.

Keywords: uncertainty quantification; finite element; neural process; process aided; ordinary differential; element analysis

Journal Title: IISE Transactions
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.