LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Influence Of Performance Level Of Male Runners On Non-linear Dynamics Of Heart Rate Variability During a 10Km Race

Photo from wikipedia

ABSTRACT The present study examines the influence of a 10 km race of runners with different performance levels on time-domain measures and non-linear dynamics of HRV. Twenty-two male recreational to… Click to show full abstract

ABSTRACT The present study examines the influence of a 10 km race of runners with different performance levels on time-domain measures and non-linear dynamics of HRV. Twenty-two male recreational to elite runners performed a self-paced 10 km race on asphalt with flat profile. The participants were divided into two performance groups based on their 10 km total time with a split at 40 min (fTT: fast total times, sTT: slow total times). During the race (Begin, Mid-Point, End), heart rate and RR-intervals were recorded continuously. Besides HRV time-domain measurements, fractal correlation properties using short-term scaling exponent alpha1 of Detrended Fluctuation Analysis (DFA) were calculated. Mean total time from fTT was significant faster compared to sTT (35:14 ± 03:15 min:sec vs. 46:34 ± 05:46 min:sec). While RMSSD and SDNN diminished strongly during the race with no differences between groups, we observed significant lower values in DFA-alpha1 at Begin for fTT. In comparison of Begin vs. Mid-Point as well as Begin vs. End a significant decrease could be determined in DFA-alpha1 for sTT. The earlier loss of correlation properties during Begin in fTT implies a fastened alteration of cardiac autonomic regulation in order to match an all-out performance attractor for maximal endurance performance.

Keywords: non linear; linear dynamics; performance; influence; race; heart rate

Journal Title: International Journal of Performance Analysis in Sport
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.