ABSTRACT PLA/hBN/Al2O3 hybrid composites with 1–30% filler concentrations were prepared in which composites with 1–2% fillers exhibit high tensile strength & modulus (8–22%, 2–12%), flexural strength & modulus (10–21%, 5–16%),… Click to show full abstract
ABSTRACT PLA/hBN/Al2O3 hybrid composites with 1–30% filler concentrations were prepared in which composites with 1–2% fillers exhibit high tensile strength & modulus (8–22%, 2–12%), flexural strength & modulus (10–21%, 5–16%), storage modulus (1–14%), Tg & thermal stability (4°C, 4%), scratch hardness (37–48%), with very low CTE (22–25% & 58–66%) & surface roughness (81–97%) compared to all other samples. This improved mechanical, thermal, and decreased CTE were due to synergetic effects of hybrid fillers in the PLA matrix. The extruded filaments with 1% hybrid fillers can be used for the mass production of future bio-based substrates and enclosures.
               
Click one of the above tabs to view related content.