LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Warm Acclimation Increases Mitochondrial Efficiency in Fish: A Compensatory Mechanism to Reduce the Demand for Oxygen

Photo from wikipedia

In ectotherms, it is well described that thermal acclimation induces compensatory adjustments maintaining mitochondrial functions across large shifts in temperature. However, until now, studies mostly focused on fluxes of oxygen… Click to show full abstract

In ectotherms, it is well described that thermal acclimation induces compensatory adjustments maintaining mitochondrial functions across large shifts in temperature. However, until now, studies mostly focused on fluxes of oxygen without knowing whether mitochondrial efficiency to produce ATP (ATP/O ratio) is also dependent on temperature acclimation. We thus measured thermal reaction norms of oxidative phosphorylation activity and efficiency in isolated mitochondria from skeletal muscle of sea bass (Dicentrarchus labrax) juveniles acclimated at optimal (22°C), low (18°C), and high (26°C) temperatures. The mitochondrial fluxes (oxygen consumption and ATP synthesis) increased with increasing assay temperatures and were on the whole higher in fishes acclimated at 18°C than in the other two groups. However, these mitochondrial rates were not significantly different between experimental groups when they were compared at the acclimation temperature. In contrast, we show that acclimation to high, and not low, temperature improved mitochondrial efficiency (on average >15%). This higher efficiency in high-temperature-acclimated fishes is also apparent when compared at respective acclimation temperatures. This mitochondrial phenotype would favor an economical management of oxygen in response to harsh energetic constraints associated with warming water.

Keywords: oxygen; temperature; mitochondrial efficiency; warm acclimation; acclimation; efficiency

Journal Title: Physiological and Biochemical Zoology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.