LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Within-Generation and Transgenerational Plasticity of a Temperate Salmonid in Response to Thermal Acclimation and Acute Temperature Stress

Photo from wikipedia

The rise in temperature associated with climate change may threaten the persistence of stenothermal organisms with limited capacities for beneficial thermal acclimation. We investigated the capacity for within-generation and transgenerational… Click to show full abstract

The rise in temperature associated with climate change may threaten the persistence of stenothermal organisms with limited capacities for beneficial thermal acclimation. We investigated the capacity for within-generation and transgenerational thermal responses in brook trout (Salvelinus fontinalis), a cold-adapted salmonid. Adult fish were acclimated to temperatures within (10°C) and above (21°C) their thermal optimum for 6 mo before spawning, then mated in a full factorial breeding design to produce offspring from cold- and warm-acclimated parents and bidirectional crosses between parents from both temperature treatments. Offspring from families were subdivided and reared at two acclimation temperatures representing their current (15°C) and anticipated future (19°C) habitat temperatures. Offspring thermal physiology was measured as the rate of oxygen consumption (Mo2) during an acute change in temperature (increase of 2°C h−1) to observe their Mo2-temperature relationship. We recorded resting Mo2, peak (highest achieved, thermally induced) Mo2, and critical thermal maximum (CTM) as performance metrics. Although limited, within-generation plasticity was greater than transgenerational plasticity, with offspring warm acclimation elevating CTM by 0.5°C but slightly lowering peak thermally induced Mo2. Transgenerational plasticity was evident as a slightly elevated resting Mo2 and a shift of the Mo2-temperature relationship to higher rates overall in offspring from warm-acclimated parents. Furthermore, offspring whose parents were warm acclimated were in worse condition than those whose parents were cold acclimated. Both parents contributed to offspring thermal responses; however, the paternal effect was stronger. Despite the existence of within-generation and transgenerational plasticity in brook trout, it is unlikely that these will be sufficient for coping with long-term changes to environmental temperatures.

Keywords: plasticity; temperature; transgenerational plasticity; acclimation; within generation

Journal Title: Physiological and Biochemical Zoology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.